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On the formation of bubbles in gas-particulate fluidized beds 
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The method of characteristics is applied to the nonlinear equations describing two- 
phase flow in a fluidized bed. The method shows how a small disturbance changes with 
time and distance and can, eventually, produce a flow discontinuity similar to a shock 
wave in gases. The parameters entering the analysis are the amplitude of the initial 
disturbance, the wavelength of the original disturbance, the particulate pressure 
function, the particulate size, the uniform fluidization voidage, the uniform fluidiza- 
tion velocity, the fluid viscosity, the particulate density, and the fluid density. A para- 
metric study shows that the following factors delay shock formation: a decrease in 
particulate size, an increase in bed density, an increase in fluid viscosity, and a 
decrease in particulate density. Experimental data on bubble formation in gas- 
particulate fluidized beds show that these same factors delay bubble formation. It is 
concluded, therefore, that the shock front and tpe bubble front are one and the same 
thing. 

1. Introduction 
A satisfactory explanation for the origin of bubbles in fluidized beds appears non- 

existent. El-Kaissy & Homsy (1976) in their recent review of the problem note this by 
stating: ‘Thus to date, the origin of bubbles has been unexplained. ’ 

Several investigators (e.g. Jackson 1963, part I; Pigford & Baron 1965; Garg & 
Pritchett 1975) have considered the formation of bubbles to be related to an insta- 
bility in the state of uniform fluidization. They have shown that a small disturbance 
imposed on the uniformly fluidized bed can grow with time. However, their analyses 
are restricted to linearized stability theory and as noted by Jackson (1963, part 11): 
‘The fact that small disturbances begin to grow is, however, no guarantee that the 
growth will continue to develop into true voids, or bubbles. Once their amplitude 
becomes finite, the nonlinearities in the equations of motion can no longer be neg- 
lected. . . ’ Thus, as stated by Jackson, and as demonstrated in the present paper, linear 
stability theory is not the proper mechanism to exhibit bubble formation. 

Another approach is that proposed by Ruckenstein & Tzeculescu-Filipescu (1967) 
who assumed that a dense homogeneously fluidized system can pass into a hetero- 
genous system when a certain critical condition is reached. Such a critical condition 
was given by Wallis (1962), who stated that bubbles are shock waves which arise when 
the rising velocity of the continuity waves exceeds the propagation velocity of the 
dynamic waves. This idea was investigated in papers by Verloop & Heertjes (1970), 
Verloop & Heertjes (1974), and Verloop, Heertjes & Lerk (1974). However, in tha 
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X *  

FIGURE 1 .  Propagation of the particulate voidage 6,. ---- , linear characteristic theory ; -, 
nonlinear characteristic theory. Characteristic network in inset. 

latter three papers the authors appear to be analysing the flow system without con- 
sideration of the fluid and particulate momentum equations, a procedure whose 
results are questionable. 

Pigford & Baron (1965) predicted, on qualitative grounds, the mechanism of shock 
formation in gas-particulate fluidized beds. They noted that ‘A  (particulate voidage) 
density disturbance that is initially symmetrical is distorted as it grows and moves 
upward, the wave crests of greater solids concentration overtaking the troughs of 
lower concentration above. The linear theory is not capable of following these changes, 
which correspond to finite amplitudes, but it is reasonable to suppose that the actual 
disturbances will develop in the direction indicated. The result is the development of 
short shock-wave structures.. .’ This effect, postulated by Pigford & Baron, is 
confirmed in this paper and is shown in figure 1.  

In  our procedure we have solved the two-phase nonlinear conservation equations of 
mass and momentum by the method of characteristics and have demonstrated that a 
shock wave can form in the medium. Calculations have then been performed to deter- 
mine the effect of the several flow parameters on shock formation. For example, calcu- 
lations show that decreasing the particulate size delays shock formation, a result 
consistent with experimental data on bubble formation in gas-particulate fluidized 
beds. This same correspondence between shock formation and bubble formation is 
shown herein for the other parameters of the flow. It is concluded, therefore, that the 
shock front and the bubble front are one and the same thing. 

Our procedure is analogous to that used in gas dynamics to demonstrate the for- 
mation of a shock wave in a one-phase fluid medium (as discussed, for example, by 
Liepmann & Roshko 1957). In  gas dynamics the unsteady, one-dimensional, com- 
pressible equations for mass and momentum under the added constraint of isentropy 
are investigated. When the method of characteristics is applied to these nonlinear 
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equations, the cha,racteristic curves have slopes which can change with time, indi- 
cating the formation of a shock wave. However, when the flow equations are linearized, 
the characteristic curves have constant slopes so that shock formation is impossible. 
The same behaviour is exhibited in our two-phase analysis. 

In the two-phase system the analysis starts with the unsteady, one-dimensional, 
incompressible equations for mass and momentum for the fluid phase and the parti- 
culate phase, with the fluid stress tensor and particulate stress tensor neglected. Using 
relations for the interaction force and particulate pressure proposed by Garg 
& Pritchett ( 1975), the fluid pressure and particulate pressure are eliminated 
by combining the fluid momentum and the particulate momentum equations. 
Then, in the two-phase system there are three equations: fluid continuity, particulate 
continuity, and combined momentum for the three dependent variables: fluid 
voidage, fluid velocity, and particulate velocity. Application of the method of 
characteristics to these nonlinear equations gives characteristic curves which can 
cross, indicating the formation of a shock. On the other hand, linearization of the flow 
equations gives characteristic curves with constant slopes so that shock formation 
is impossible. 

The existence of characteristics implies that the three equations, fluid continuity, 
particulate continuity and combined momentum, are hyperbolic. Mathematically, 
hyperbolicity means that there exist real characteristic curves, as many in number as 
there are equations, along which the partial differential equations reduce to ordinary 
differential equations (the compatibility relations) containing gradients along the 
characteristics only. 

The formal application of the method of characteristics to our three equations gives 
only two real characteristic directions. The third compatibility relation must, therefore 
have an infinite slope. (A similar situation was encountered by Bradshaw, Ferriss & 
Atwell 1967.) Its compatibility relation is obtained from a combination of the fluid 
continuity and particulate continuity equations which expresses conservation of mass 
for the mixture and is constant for all times. 

The solution of the characteristic network requires input data for the dependent 
variables at an initial time. For this purpose a sine function disturbance is imposed on 
the particulate voidage at  minimum fluidization. Consistent initial conditions are 
determined for the other dependent variables, namely the fluid velocity and the 
particulate velocity. 

2. Theory 
A fluidized bed, under normal operating conditions, contains a two-phase high- 

temperature chemically reacting mixture of multispecies fluid particles and multi- 
species solid particles. The equations describing this phenomenon have been derived 
by Ness & Fanucci (1977). 

In the present instance a highly specialized form of these equations is employed. A 
cold flow is postulated and the two-phase flow equations are investigated under the 
following assumptions: one fluid species ( )f, one particulate species ( ) p ,  no chemical 
reactions, constant temperature, constant fluid density (pf = const.), constant particu- 
late density ( p p  = const.), zero fluid shear stress (Tf = 0 ) ,  zero particulate shear stress 
(TP = 0). Under these assumptions, the fluid and particulate energy equations are not 
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required and the continuity and momentum equations for the fluid phase become, 
respectively, 

$ + V . e f v f  = 0,  (1) 

(2) 
avf 

Ef P f  at+ Cf P f  (Vf  * V )  V f  + VCfPf - € f  P f  g + e p  Pp fp = 0, 

while for the particulate phase they become: 

%+VAPVB = 0 ,  (3) 

v . v ) v p + v € p p p - € p p p g - € p p p f p  = 0. (4) € P P P Z  +€PPP( P 
h P  

Equations for cold flow for a single fluid species and a single particulate species have 
been previously advanced by Murray (1965) and Anderson & Jackson (1967). 

In  these equations, ef and e, are the fluid and particulate voidages, respectively, 
related by ef + ep = 1 ; also vf,  v, are the fluid and particulate velocities, respectively; 
P f  9 P P  are the fluid and particulate static pressures, respectively; g is the acceleration 
vector while the grouping ep p p  f, is the interaction force per unit volume. 

The relations proposed by Garg & Pritchett (1975) for the interaction force and the 
particulate pressure are employed: e p p p f p  = B ( e f )  (vf - v,) - p f  Vef and p ,  = p f  +f (ef )  
where B(ef) is the local mean drag function. 

Equations (1)  to (4) are specialized to one dimension and time, with the positive x 
co-ordinate acting opposite in direction to the gravitational acceleration vector so that 
g = - $g; $ is a unit vector. The uniform fluidization analysis enables the gravitational 
acceleration to be expressed by 

( 5 )  BO(Efo) U f o  

(P, - Pf)EfoePo ’ 9 =  

where the subscript (,,) refers to the state of uniform fluidization and u,” is the uniform 
fluidization velocity. Defining a particulate pressure function G(ef)  and a reaction 
function R by: 

the momentum equations (2) and (4) can be combined by eliminating the fluid pressure. 
Introducing the dimensionless quantities 

the three-equations describing the two-phase system are: 
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a--Ef * a--Ef au* 
p ax* p ax* 

- at*+" - - - - E  9 = 0, (9) 

A is the wavelength of the disturbance to be imposed, uf and up are, respectively, the 
x wise fluid and particulate velocity components, and pm, is defined by (17) with a 
subscript (J on the voidages. 

The first equation represents fluid continuity, the second equation particulate 
continuity, and the third equation combined momentum. These equations are hyper- 
bolic and a solution is sought for the three dependent variables u?, u:, --Ef along charac- 
teristic lines in the x*, t* plane whereon the partial differential equations reduce to 
ordinary differential equations. Hyperbolicity of the three equations (8) to (10) means 
that there are an equal number (three) of real characteristic directions each with its 
own compatibility relation. The formal application of the method of characteristics 
gives only two real characteristic directions. The third characteristic therefore must 
have an infinite slope. (A similar situation was encountered by Bradshaw et al. 1967.) 
The slopes for the three characteristic directions are 

(g)cll = ** 

(%)c* = v*-+c*, 

where V* = V/ufo and c* = c/ufo; V and c are, respectively, the weighted mean 
velocity and the dynamic wave velocity defined by: 

PfUf I PPUP 

V =  --Ef --EP 

B+P. ' 
--Ef --EP 

The characteristic network is shown in the inset on the upper left-hand portion of 
figure 1. The curve C,, is a characteristic parallel to the z* axis; the curve C, is a right- 
running characteristic obtained by taking the ( + ) sign in (12) while the curve C- is a 
left-running characteristic resulting from the ( - ) sign in (12). Wallis (1969) obtained 
relations (12) to (14) by another procedure. 

The compatibility relation along the parallel characteristic line C,, results by elimi- 
nating the time-dependent terms from (8) and (9) to provide (a /ax*)  (ef u? + eP u;) = 0. 
Integration provides ef u; + - - E ~  u: = K(t*) where K(t*)  is, at most, a function only oft*.  
Conservation of mass, however, dictates that K(t*) remains constant at its initial 
value, i.e. K(t*)lt.=,, = --Efo. Therefore the compatibility relation along C', is: 

&f u; + --Ep u; = efo. (15) 
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The compatibility relations along C, result from the formal application of the 
method of characteristics to equations (8) to (10); they are 

where p; = pm/pmo and H* = HIPmo ufo; pm and H are, respectively, a weighted mean 
density and a mass flux difference defined by: 

pm = Pf -+-, PP 

ef 

H = Pf U f  -Pp u p .  (18) 

Equations (15) and (18) show that u; and u$ are functions only of ef and H* through 
the relations 

Thus the quantities Y*, c*, R* which appear in the slope equations andlor the 
compatibility relations along the C, characteristic lines are functions only of ef and H*, 

The total derivatives in the compatibility relations (16) apply only along the charsc- 
teristic lines C,. However, since 

a a 
= - + ( V * + c * ) - ,  (&)c, at* ax* 

equation (16) becomes 

p ; c * [ ~ + ( V * + ~ * ) ~ ] + [ ~ + ( V * & c * ) ~  aH*l ax TR*= 0.  (22) 

Adding these two relations provides 

* aef a€ aH* 
ax* ax* p,-++;v*--L+- = 0, at* 

while subtracting the same two relations gives 

aH* aH* ae 
at* ax* ax* 
-+ V * - + & C * ~ L - R *  = 0. 

Equations (23) and (24) are not restricted to the C, characteristic lines. They are used 
in the next section to determine the starting condition for the H* function. Equations 
(23) and (24) can also be obtained directly from the original flow equations (8) to (10). 

3. Method of solution 

is assumed that 
At t* = 0 a sine wave disturbance is imposed on the uniform particulate voidage. It 

ep = cpo + A sin 2nx*, (25) 
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where A is the amplitude of the disturbance. Consistent with this assumption, the 
initial distribution of the H* function is required. For this purpose (23) and (24) are 
used. Since the form for ep at t* = 0 is assumed it follows that, at t* = 0, H* = H*(e,) 
only. Thus 

(26) 
aH* dH*aef  and - = -- aH* dH*asf -- - -- 

at* def at* ax* def ax*’ 

Equation (23) provides 

Equating (27) and ( 2 8 )  and noting that ef = ef(x*)  only at  t* = 0 gives 

with the starting condition H*(x* = 0) = p?. Equation (29) is solved by the Runge- 
Kutta method. However, calculations showed that (29) did not produce a periodic 
distribution of the H* function. That is, just as cp(x* = 0) = ep(x* = 1) from (25) it  is 
also required that the H* function be periodic, i.e. H*(x* = 0) = H*(x* = 1). This 
latter condition is satisfied only if R* = 0 at t* = 0. Then the differential equation for 
the H* function at t* = 0 becomes 

with the starting condition H* (x* = 0) = p?. 
The characteristic network is solved by assuming that all conditions a t  points 1 and 

2 are known (inset of figure 1) and by applying the finite difference technique to the 
derivatives. Then the slope equations (12) give for the co-ordinates at point 3: 

x; - x: + (V* +c*),t:  - (V* -c*f2tz* 
(V* + c*)1- (V* -c*)2 

t; = 7 

x3* = x ;  + (V* - c*)2 (t; - t ; , ,  (32) 

and the compatibility equations (16) give for the fluid voidage and H* at point 3: 

H; = H , * + p ~ , ~ ~ ( e , , , - ~ f ~ ) + R ; ( t ;  - t , * ) .  (34) 

In  the present case, at  the start of the analysis, points 1 and 2 lie on the x* axis with 
tf = t: = 0. Then, for chosen values of x: and xz, epl and c,,, follow from (25); integra- 
tion of (30) gives the corresponding H: and HZ while (19) and (20)  give ur*, andz&. In 
the actual solution of the characteristic network an iterative procedure is used to find 
conditions at point 3. 
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FIGURE 2. 
t* 

I Growth of the maximum particulate voidage with time. Curve 1 ,  linear stability 
of Garg & Pritchett (1975); curve 2, nonlinear theory; s, shock forms. 

theory 

The expression used for the local mean drag function B(ef) is that suggested by Garg 
& Pritchett ( 1975) : 

(35) 9 9 €23 B(ef) = -- exp (4 .093-0 .3625~~)  
2 r2 p f  

where r is the particulate radius and ,uf is the fluid dynamic viscosity. 

4. Results and conclusions 
There are nine parameters in the analysis: A ,  amplitude of the initial disturbance; 

A, wavelength of the initial disturbance; G(ef )  particulate pressure function; r,  particu- 
late radius ; efo, uniform fluidizationvoidage; ufo, fluidization velocity;,uf ,fluiddynamic 
viscosity; pp, particulate density; pf, fluid density. The parameters A ,  A ,  G(Ef) are 
independent of each other and of the other six. The remaining six parameters are 
related through (5). Table 1 contains the values of the parameters for figures 1 to 8. 
The values for r( = 4.3 x 10-4 m), pf ( = 1.827 x kg/m - s), pp ( = 3000 kg/m3), 
pf (=  1.2 kg/m3) are those used by Garg & Pritchett (1975). A and efo are already 
dimensionless; the other seven parameters p r o ~ d e  the four dimensionless groups : 
A/r,  p p / p f ,  G(c f ) /pp  u;~, pf ufo r /p f .  Values for these dimensionless groups can be readily 
calculated from the numbers given in table 1. 

All calculations in this report are based on the whole-field perturbation assumption, 
i.e. the uniformly fluidized bed is perturbed by an infinite number of contiguous sine 
waves for eP [equation (25)] starting a t  x* = 0. The stability of the uniformly fluidized 
bed is reflected in the time and distance for shock formation, that is, the greater the 
time and distance for shock formation the more stable is the fluidized bed. 

Figure 1 shows the propagation of the particulate voidage eP with time and distance. 
The results of two different theories are presented. In  one, the flow equations are 
linearized and the method of characteristics is employed for a solution. This procedure 
is identical to  the nonlinear analysis except that, for the linear analysis, the character- 
istic lines have constant slope and a particulate voidage of increasing amplitude with 
time and distance (dashed curves). These dashed curves retain their original ‘sinu- 
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FIGURE 4. Maximum particulate voidage as a function of t* and Q(E,). ----, a(€,) = - 146.14 
N/m* is the value for neutral stability according to Garg & Pritchett (1976). 8,  shock forms. 

soidal ' shape with time and distance and cannot roll up into a discontinuity because of 
the constancy of their characteristic slopes. In the second theory the method of 
characteristics is applied to the nonlinear equations as discusaed in this paper. Now the 
characteristic lines cross (as shown in the figure) and the original sinusoidal shape for 
ep rolls up into a discontinuity a t  the crossing point. This effect was predicted, on 
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FIGURE 6 .  Effect of uniform particulate voidage ewe on time and distance €or shock formation. 

qualitative grounds, by Pigford & Baron (1965). The time to the crossing point is 
t = 0.0338 s and the distance d = (3.6-0-5) h = 0.02666 m. Also shown on the figure 
is the scale for ep. 

Figure 2 shows the growth of the maximum particulate voidage with time according 
to the linear stability theory of Garg & Pritchett (1975) (curve 1) and the present 
nonlinear analysis (curve 2). The linear stability curve follows from the relation 
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FIGURE 7. Effect of fluid viscosity p, on time and distance for shock formation. 

where, for the parameters of figure 2, f = 16.53 s-1. According to linear stability 
theory, instability occurs when f > 0. In  the present case, the Garg & Pritchett curve 
increases, without end, for all time since there is no mechanism in the analysis for 
shock to occur. The nonlinear analysis, however, indicates that a shock forms at 
t = 0.0338 s, a t  which time the nonlinear analysis ends. There is, however, a close 
correlation between linear and nonlinear theory for the range of applicability of the 
latter analysis. 

Figure 3 shows the effect of the particulate pressure function on the time t (in sec- 
onds) and the distance d (in metres) for shock formation. The G ( e f )  function acts like a 
compressibility factor with an increase (negatively) in G(ef )  producing an increase in 
the dynamic wave velocity c (14). In  the limit as G(ef )  + - 00, c + 00, i.e. the bed be- 
haves as an incompressible fluid in gas dynamics. Figure 3 shows, correctly, that as the 
bed becomes more 'incompressible ' (that is, as G(ef )  increases negatively) there is less 
chance for a shock to occur. 

Figure 4 shows the maximum particulate voidage as a function of time and the 
particulate pressure function G(ef)  for the same parameters as in figure 3. The solid 
curves for the indicated values of G(ef)  result from the nonlinear theory. The dashed 
curve for G(ef)  = - 145.14 N/m2 is for neutral stability according to Garg & Pritchett 
(1975) and is obtained from equation (47) of their paper. The dashed curve indicating 
shock formation is a replot (in dimensionless time) of the time curve of figure 3. For 
G(ef )  = - 130 N/m2, the maximum particulate voidage increases with time and the 
calculations end when the shock forms. However, as G(ef )  increases negatively, the 
calculations show that eP,., can decrease below its original maximum ( =  0.61) and 
still produce a shock. This result is contrary to linear stabilit'y theory in that it shows 
that a negative growth rate does not necessarily imply stability. When G(ef )  = - 160 
N/m2 the perturbations damp out, indicating stability. 
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FIGURE 8. Effect of particulate density ps on time and distance for shock formation. 

Pigure 5 shows the effect of the particulate radius r on the time and distance for 
shock formation. The curves indicate that decreasing the particulate radius increases 
the bed stability. This result is in agreement with experimental data as stated by 
El-Kaissy & Homsy (1976): ‘ . . . beds of very fine particles will not bubble until con- 
ditions removed from minimum fluidizations are reached ’. 

Figure 6 shows the effect of the uniform particulate voidage epo on the time and 
distance for shock formation. It is noted that as epo increases, that is, the bed becomes 
more dense, it  becomes more stable, a result in agreement with the Garg & Pritchett 
(1975) statement: ‘. . . dense fluidized beds are more stable than dilute fluidized beds’. 

Figure 7 shows the effect of the fluid viscosity ,uf on the time and distance for shock 
formation. The results indicate that increasing p f  increases the bed stability. 

Figure 8 shows the effect of the particulate density p p  on the time and distance for 
shock formation. The curves indicate that increasing p p  (or pp/pf since pf is constant) 
decreases stability and increases the possibility of bubbling. This result is in agree- 
ment with the statement by Rowe (1971): ‘The most important parameter in deter- 
mining bubbling is the ratio of solid to fluid density and if this exceeds about 10, the 
system is likely to bubble. ’ 

The calculations in this paper are based on a local mean drag function B(cf) sug- 
gested by Garg & Pritchett (1975) and which, according to them, is ‘strictly speaking, 
only valid for water-fluidized glass spheres. ’ In addition, calculations herein are based 
on assumed constant values for the particulate pressure function G(ef ) .  It is hoped that 
more realistic expressions for these functions, when they become available, will not 
alter the qualitative results herein. 

In  conclusion, it has been demonstrated by the method of characteristics that a small 
disturbance imposed on the nonlinear two-phase flow equations can, with time, 
produce a discontinuity similar to a shock wave in gases. A study of the parameters 
entering the problem indicates that the following factors delay shock formation: a 
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decreaae in particulate size, an increase in bed density, an increase in fluid viscosity, 
and a decrease in particulate density. Experimental data on bubble formation in gas- 
particulate fluidized beds show that these same factors delay bubble formation. It is 
hypothesized, therefore, that the shock front and the bubble front are one and the 
same thing. 

If this hypothesis is correct, that the origin of the bubble is due to the formation of a 
shock wave, then i t  follows that the initial velocity of a single rising bubble is equal to 
the shock wave velocity at the instant of shock formation. To predict bubble velocity, 
many authors currently employ the Davies & Taylor (1950) expression for the rising 
velocity of a bubble formed from trapped air, initially at rest, in a stationary column of 
liquid. This relation is u, = O*711(gDe)h and relates the bubble velocity u b  (m/s) to 
the equivalent bubble diameter D,(m); it  implies that q + O  as De+ 0. However, its 
extension to the formation of bubbles in a fluidized bed is questionable. In  fact, 
inspection of the test data in Calderbank, Pereira & Burgess (1976) relating Ub to D, 
indicates that a finite velocity in the limit when D,+ 0 is highly feasible. The shock 
wave velocity at the instant of shock formation must be determined from the jump 
relations across a moving shock wave in a gas-particulate fluidized bed. The authors 
of this paper are currently engaged in this task. 

Details of the analysis in this paper, the computer program, and additional results 
are contained in a report by Fanucci, Ness & Yen (1978). 

This research was started under USERDA Morgantown Energy Research Center 
Contract EY-774-21-8087, Task Order No. 8, and completed under funding from the 
state of West Virginia to West Virginia University for energy research. 
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